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Abstract: Learning to manipulate dynamic and deformable objects from a sin-
gle demonstration video holds great promise in terms of scalability. Previous
approaches have predominantly focused on either replaying object relationships
or actor trajectories. The former often struggles to generalize across diverse
tasks, while the latter suffers from data inefficiency. Moreover, both method-
ologies encounter challenges in capturing invisible physical attributes, such as
forces. In this paper, we propose to interpret video demonstrations through Pa-
rameterized Symbolic Abstraction Graphs (PSAG), where nodes represent ob-
jects and edges denote relationships between objects. We further ground geo-
metric constraints through simulation to estimate non-geometric, visually imper-
ceptible attributes. The augmented PSAG is then applied in real robot experi-
ments. Our approach has been validated across a range of tasks, such as Cut-
ting Avocado, Cutting Vegetable, Pouring Liquid, Rolling Dough, and Slicing
Pizza. We demonstrate successful generalization to novel objects with distinct
visual and physical properties. For visualizations of the learned policies please
check: https://www.jianrenw.com/PSAG/
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1 Introduction

Humans can learn to manipulate dynamic and deformable objects by simply watching one single
demonstration video. It is desired for robots to acquire similar capabilities and learn from the mas-
sive amount of videos covering numerous skills available on the internet, which could potentially
bring a ”ChatGPT moment” to the field of robotics and make a significant step forward in robot
learning and autonomy. However, despite considerable progress in artificial intelligence and robotics
in recent years, the development of robot systems that can match human-level capabilities of learn-
ing from video demonstrations remains elusive. Why is this difficult? We identify three primary
challenges in learning from few-shot video demonstrations. First, the extraction of the demonstra-
tor’s intentions and actions from videos is complicated by the presence of extraneous information in
videos, making it difficult to isolate relevant cues. Second, the task of translating observed intentions
into adaptable skills—skills that robots can apply in a wide range of objects and environments, each
with its own set of visual and physical characteristics—presents a significant challenge. This diffi-
culty stems from the large variability in visual and physical attributes across different objects and
environments. Third, developing efficient learning algorithms that enable robots to acquire skills
from a limited number of demonstrations, is also intrinsically a difficult task.

Two primary approaches to learning from demonstration have been explored in the past. One sem-
inal approach developed nearly half a century ago focused on interpreting the demonstrator’s in-
tentions as object relationships and replicating those relationships [1]. Subsequent research in this
domain focuses on utilizing perceived abstract relationships as objectives for planning techniques,
including Task-level Planning [2] and Task and Motion Planning [3]. Notably, these approaches
often overlook detailed metrics of objects and their relationships, and in many instances, the precise
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motions of actors are de-emphasized and sometimes not even measured. While these methods effi-
ciently eliminate most irrelevant information and are adept at learning from a single demonstration,
they often rely on strong human priors, incorporating hardcoded elements, which poses a challenge
in addressing the first challenge [4].

Another avenue in learning from demonstration involves direct robot teaching, wherein desired po-
sitions and trajectories are demonstrated to a robot through teleoperation [5], motion capture tech-
nology [6], or computer vision [7]. The robot then learns to predict actions that align with the
demonstration data [8, 9, 10]. These approaches assume that, through training on a diverse dataset,
the system will implicitly comprehend the demonstrators’ intentions. However, this assumption is
not always accurate and can be highly inefficient, leading to a failure in addressing the third chal-
lenge.

More importantly, both approaches fail to address the second challenge, as most physical charac-
teristics other than movement are challenging to observe from videos. One purpose of this paper is
to make the point that behavior is more than just replaying object relationships or trajectories inter-
polated from a set of observed trajectories. This is especially true in tasks where the exact values
of forces matter, such as in dynamic tasks [11], and tasks involving deformation, separation, and
combination of materials.

In contrast to the aforementioned approaches, our proposal involves interpreting video demonstra-
tions using Parameterized Symbolic Abstraction Graphs (PSAG). These graphs consist of nodes and
edges as abstractions, which are parameterized by their geometric and non-geometric attributes. In
this framework, each node can represent a rigid or deformable object, incorporating attributes that
capture the six degrees of freedom (6DOF) of the object pose. The edge information defines rela-
tionships between objects, encompassing aspects like contact, and is parameterized according to the
contact region and forces acting between them.

To build the PSAG, we begin by utilizing off-the-shelf detectors, depth estimation, and optical flow
estimation to evaluate object poses and relationships. Subsequently, we learn to simulate the demon-
stration with this geometric information (e.g. positions, contact points) to calculate forces through
this process. This enables us to parameterize the non-geometric imperceptible attributes of the edges
(e.g., forces), laying the groundwork for transferring the skill to the real world.

Our proposed method helps the agent disregard irrelevant information and effectively learn from
a single video. We validate the efficacy of our approach through experiments conducted on five
challenging tasks: Cutting Avocado, Cutting Vegetable, Pouring Liquid, Rolling Dough and Slicing
Pizza. Notably, the test environments differ substantially from the learning environments, encom-
passing variations in geometry, appearance, and physics.

To summarize, our contribution includes:

• Proposing to interpret video demonstrations as parameterized symbolic abstraction graphs
(PSAG)

• Proposing to learn simulations from demonstrations with minimal human input, enabling
the addition of non-geometric temporally parameterized visually imperceptible attributes
to the edges.

• Demonstrating the efficacy of our approach in performing dynamics and deformable ma-
nipulation tasks with generalizability.

2 Related Work

Symbolic Visual Reasoning Symbolic methods have shown good data efficiency and generaliza-
tion capabilities across various computer vision tasks, ranging from visual question answering [12,
13, 14] to image captioning [15, 16, 17]. Recent advancements have extended these methods into
3D object relationship reasoning [18, 19, 20], object physics modeling [21, 22, 23, 24, 25, 26, 27],
and video action understanding [28, 29, 30].
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Diverging from methods that involve learning to perceive physics or exploiting physical constraints
to enhance the comprehension of a given video [21, 31], our research centers on the interpretation
of video demonstrations to guide robots in performing tasks involving varying objects or environ-
ments. And in contrast to approaches that emphasize reasoning about intervention [32], which
predominantly revolves around predicting outcomes, our work focuses on predicting how to achieve
the same desired outcome when presented with a new set of objects.

Learning from Human Video A large field of Learning from Demonstration (LfD) [33, 34, 35]
focus on learning from expert demonstrations [10, 9, 5]. These approaches often have limitations as
they rely on a large number of expert demonstrations and assume a shared observation and action
space between the imitator and demonstrator. These constraints significantly restrict the potential
for effective learning from videos. Instead of learning from robot demonstrations, an alternative
approach involves learning from human demonstrations, which are easy and cost-effective to collect.
However, the challenge lies in the absence of ground truth actions. One direct method is to imitate
human motion [36, 37, 7] or object motion [11, 4]. Often, this line of work focuses on replicating
low-level actions of the demonstration rather than developing more generalizable abstractions. In
the pursuit of learning higher-level abstractions related to manipulation, some studies attempt to
predict visual affordances, indicating where to interact in an image and providing local information
on how to interact [38, 39]. While these approaches can serve as effective initializations for a
robotic policy, they are not standalone solutions for task completion. Typically, they are employed in
conjunction with online learning, necessitating several hours of deployment-time training and robot
data [40]. Importantly, these affordances fall short for complex tasks, such as cutting, where crucial
information like force cannot be observed from the video, limiting the applicability to tasks beyond
simple pick-and-place tasks. In contrast to previous approaches, our proposed method grounds the
object relationships in simulation. This allows the robot to uncover unseen information from videos
and thus facilitates learning from a diverse array of tasks.

Deformable Object Manipulation Deformable object manipulation poses a longstanding chal-
lenge in robotics. Prior research has primarily concentrated on various tasks such as rope manipula-
tion [41], pouring liquid [42], and cloth manipulation [43]. Additionally, manipulating elastoplastic
objects, such as deforming them through grasping [44], rolling [45], or cutting [46], has been ex-
plored in other studies. Instead of individually learning each skill through model-free reinforcement
learning or model-based planning, our paper focuses on learning a diverse set of skills from single
video demonstrations.

3 Methods

In this section, we first outline the process of constructing parameterized symbolic abstraction graphs
(PSAG) from videos using off-the-shelf tools (Sec. 3.1). Following that, we describe the process of
learning simulations from PSAG and adding non-geometric visually imperceptible attributes to the
edges. (Sec. 3.2). We then explain the method for transferring the PSAG to the real world (Sec. 3.3)
(Fig.1).

3.1 Building PSAG

To construct parameterized symbolic abstraction graphs from videos, our approach consists of three
key steps. First, we employ computer vision techniques to extract depth information, perform in-
stance segmentation, and calculate optical flow, which enable us to reconstruct a semantic point
cloud for each frame. Next, we fine-tune the depth estimator by incorporating 3D geometric con-
straints to achieve temporal consistency in video depth estimation. Finally, we retain only objects of
interest and calculate their attributes and relationships with other objects, facilitating the construc-
tion of the PSAG. We now introduce each module in detail.
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Figure 1: Overview of our pipeline for learning from videos. (a) Building Parameterized Symbolic
Abstraction Graphs (PSAG): PSAGs are generated by instance segmentation, consistent video depth
estimation, and object relationship calculation. (b) Learning to Simulate: Constructing digital twin
to ground geometric constraints via trajectory optimization (c) PSAG-to-Real Transfer using hybrid
motion-force control.

Semantic Point Cloud Reconstruction We commence by estimating the monocular depth using
ZoeDepth [47], which provides metric-scale depth information for each RGB frame. It is crucial to
note that the depth information across adjacent frames lacks coherence, an issue addressed in the
subsequent paragraphs. Subsequently, we employ Grounding DINO [48] for object detection and
Segment Anything (SAM)[49] for instance segmentation. We leverage GMFlow[50] for optical flow
estimation, which facilitates object tracking across frames. This process enables us to construct a
semantic point cloud that encapsulates both spatial and semantic details.

Consistent Video Depth Estimation We employ Consistent Video Depth Estimation
(CVDE) [51] to produce temporally coherent and geometrically consistent depth maps through-
out the entire video. CVDE fine-tunes the pre-trained single-image depth estimation model [47] to
minimize geometric inconsistency errors across multiple frames specific to the given video. Fol-
lowing the fine-tuning stage, the final depth estimation results for the video are computed using the
fine-tuned model.

PSAG Generation To generate the PSAG, our first step is to filter out irrelevant objects. We
specifically identify objects that interact with the hand as objects of interest. This concept of in-
teraction can be hierarchically propagated. For example, objects directly interacting with the hand
are classified as the first level of interaction, and objects interacting with the first-level objects are
classified as the second level of interaction, and so on. In our current implementation we preserve
objects with up to three levels of interaction.

Next, we generate a graph representation to capture attribute changes and relationship dynamics
among the objects of interest. Given that 4D reconstruction remains an open problem with no com-
prehensive solution, we propose a retrieval-based approach for estimating 6DOF object poses. Ini-
tially, we compute an oriented bounding box (OBB) around each object using the method from [52].
Next, employing Pointnet++ [53], we retrieve the nearest neighbor from a subset of Objaverse-XL
[54]. We then resize and orient the retrieved object to fit the OBB of each corresponding object.
Due to potential occlusion, the estimated OBBs may not tightly bound the objects. To address this,
we further refine the object poses using iterative closest points (ICP) [55], which are used are node
attributes. Additionally, we incorporate edge information to indicate whether two objects are in
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contact with each other. This involves calculating the Chamfer distance between their respective
point clouds. If the minimum distance falls below a predefined threshold, we determine that the
two objects are in contact. Additionally, we capture the closest points of each pair of objects in
contact. To enhance the representation, we apply Gaussian filters to smooth the contact region, and
these smoothed regions are then utilized for optimization. Through these processes, we construct
a PSAG for a given video. In this graph, each node corresponds to an object of interest, and each
edge denotes the relationship between them. It’s worth noting that the current edge attributes only
include geometric information (e.g. contact regions). We will now elaborate on how to incorporate
non-geometric visually imperceptible attributes into the edges.

3.2 Learning to Simulate

With the provided PSAG, we propose to learn simulations for estimating non-geometric attributes.
Considering that most general tasks from videos involve the interaction of both rigid and deformable
bodies, we advocate the utilization of the Moving Least Squares Material Point Method (MLS-
MPM)[56], as per the approach outlined in[57, 58].

To ground the object relationships over the entire video, we initially decompose each task into mul-
tiple subtasks based on changes in these constraints, such as the establishment and breaking of
contacts. For each subtask, we utilize the object relationships of the subsequent subtask as opti-
mization goals. We frame this process within a Markov Decision Process (MDP) defined by a set of
states s ∈ S, actions a ∈ A, and a deterministic, differentiable transition dynamics st+1 = p(st, at),
where t denotes discrete time, and states are composed of different objects st = {sit}i=1,...,n. For
any pair of objects (sit, s

j
t ), the geometric constraints can either exist (in contact) or not (not in con-

tact), and a cost function is denoted as C(sit, s
j
t ). For any reference state (6DOF poses of objects)

ŝt, a distance function is denoted as D(st, ŝt). Following Wen et al. [4], object poses are expressed
in the receptacle’s coordinate frame (e.g., milk carton’s pose relative to the cup in the pouring task),
which allows generalization to new scene configurations regardless of absolute poses. We also
adopted the Non-uniform Normalized Object Coordinate Space (NUNOCS) [59] for category-level
trajectory projection, which enables generalization to arbitrary, unknown instances. The objective
is to determine a trajectory that minimizes the total loss L. Following [60], we use gradient-based
trajectory optimization to solve for an open-loop action sequence:

argmin
a0,...,aT−1

L(a0, ..., aT−1) = argmin
a0,...,aT−1

λ1 ×
T∑

t=1

∑
i,j

C(sit, s
j
t )

+λ2 ×
T∑

t=1

D(st, ŝt) + λ3 ×
T∑

t=1

E(at) (1)

where st+1 = p(st, at).

C(siT , s
j
T ) represents the KL divergence [61] between contacting distributions if there are geometric

constraints between (sit, s
j
t ); otherwise, it is 0. We have additionally formulated a cost function for

scenarios involving the separation of one object into two parts, such as cutting. In this context,
the cost is defined as the minimum distance between each pair of separated parts. The action at
encompasses both the translation velocity and angular velocity of each object, and E(at) denotes
the energy associated with executing action at. Additionally, λ1, λ2, λ3 are weighting parameters.

We address Equation 1 by iteratively updating the action sequence with ∇Lat
, where t ranges from

0 to T , employing an Adam optimizer [62] initialized with reference trajectories. The modified
trajectories are then utilized to update the geometric attribute of the PSAG. Furthermore, at each
timestep, we compute the force ft and torque τt observations, which are incorporated into the edge
attributes. This augmented PSAG enables the implementation of a hybrid motion-force controller
for real-world applications.
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3.3 PSAG-to-Real Transfer

Instead of transferring an end-to-end policy that directly operates in real environments based on
visual inputs [63, 64], our approach involves transferring abstract poses and forces. Notably, the
PSAG in Sec 3.2 is represented in the receptacle’s coordinate frame and Non-uniform Normalized
Object Coordinate Space (NUNOCS) to enable category-level generalization. To adapt them to
the real world, we must update the PSAG with the current environment, transitioning from the
receptacle’s coordinate frame and NUNOCS to the real-world frame at the actual scale.

The initial step involves transitioning from the receptacle’s frame to the world frame, requiring
knowledge of object poses and shapes in the real world. We constructed a multi-camera system as
depicted in Fig. 2(f). Utilizing eight RealSense D435 depth cameras calibrated with Multical [65]
using an AprilTag [66] board, we deproject the depth and color images into a point cloud. By
consolidating information from all eight cameras, we obtain a comprehensive spatial understanding.
Following segmentation, we crop the point cloud of each object and fit an object to the position as
mentioned in Sec 3.1, providing us with the position and orientation of each object.

The second step is to adopt NUNOCS to capture the geometric variation across all instances, which
is not direct. Consider milk pouring as an example. If the commonly selected center-of-mass (CoM)
is used as the canonical coordinate frame origin, when aligning a novel object instance to the demon-
strated one, it may collide with or float away from the receptacle. To address this, we initialize the
trajectory from the processed PSAG, where the origin of the category-level canonical coordinate
system is the CoM. Then we redo the process described in Sec 3.2 again with the test-time objects,
but this time, everything is represented in the world frame with real size. After this, we obtain the
optimal trajectory in the real-world frame at the actual object scale.

Finally, we transfer optimal trajectories from the simulation to a real robot using a hybrid motion-
force controller. The transfer mechanism is described by Equation (2):

prt = k1 × pst + k2 × (fr
t − fs

t ) (2)

Here, prt , fr
t denote the positions and forces of the real robot, while pst , fs

t represent the positions
and forces obtained from simulation. The parameters k1 and k2 are compliance parameters. The
robot is position-controlled in Cartesian space to achieve both the target position and the desired
force. We then employ inverse kinematics to convert Cartesian coordinates to joint space, where the
robot is controlled by a Proportional-Derivative (PD) controller.

4 Experiments

In this section, we present experiments conducted in both simulated and real-world environments,
followed by results and ablation studies.

4.1 Experimental Setup

Tasks Our experiments were designed to evaluate the performance of our approach on five tasks
involving deformable objects: Cutting Avocado, Cutting Vegetable, Pouring Liquid, Rolling Dough
and Slicing Pizza. Deformable objects are ubiquitous in kitchen settings, a critical environment for
future robotic applications. We selected these tasks to evaluate the model’s generalizability and
adaptability, which are essential for its success in real-world scenarios.

Evaluation We devised task-specific metrics for qualitative evaluation over 20 trials for each task.
For cutting avocados, success is cleanly cutting around the core without cutting into it. For veg-
etables, success is making a smooth planar cut without generating excessive force on the cutting
board. For pouring liquids, success is pouring Coca-Cola/water/yogurt into the cup without spilling.
For rolling dough, success is maintaining contact and flattening play sand/play-dough/dough with-
out separating pieces. For slicing pizza, success is dividing it into two parts without generating
excessive force or tearing pizza (Figure 2).
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Figure 2: Experiment Settings: (a) Robot arm with an avocado holder and another arm with a knife
and force sensor.(b) Robot arm and cups for the pouring task. (c) Rolling pin mounted on the robot
arm for rolling dough.(d) Slicer affixed to the robot arm for slicing pizza.(e) Knife mounted on the
robot arm for cutting vegetables. (f) Multi-camera system. (g) Cups, yogurt, Coke, and water for
the pouring task. (h, i) Dough, play sand, and play dough for the rolling dough and slicing pizza
experiments. (j) Cucumber, tomato, and banana for the cutting vegetables task.

Method Cutting Avocado Cutting Vegetable Pouring Liquid Rolling Dough Slicing Pizza

YODO 10% 55% 15% 10% 50%
TF 5% 50% 5% 10% 40%
IRL 0% 0% 10% 0% 0%
IW 10% 65% 80% 25% 60%

Ours 75% 75% 80% 70% 70%

Table 1: Quantitative Results: Each row represents the success rate of the five tasks. Rows 1-4
demonstrate the results of You Only Demonstrate Once, Trajectory Following, Inverse Reinforce-
ment Learning, and Interaction Warping, which serve as baseline methods for comparison. Row 5
illustrates that our method consistently outperforms baseline methods by a large margin.

Baselines and Ablations As there is no direct baseline for comparison, we evaluate our method
against four variants of existing approaches: You Only Demonstrate Once (YODO)[4], Trajectory
Following (TF), Inverse Reinforcement Learning (IRL), and Interaction Warping (IW)[67]. YODO
and TF focus on replaying the trajectory observed in the video, while IRL optimizes object rela-
tionships without using trajectories. All baselines solely leverage features directly observable in the
video. Please refer to the supplementary material for more details.

As shown in Table 1, our method outperforms all baseline methods by a large margin. The three
components—geometric constraints, reference trajectories, and force information—each contribute
to learning a robust policy. Firstly, comparing YODO and TF with our method, the absence of
geometric constraints in these baselines results in no reward mechanism promoting behaviors like
rolling or pouring, leading to a lower success rate. Secondly, comparing IRL with our method shows
that omitting reference trajectories and only encouraging geometric constraints leads to either ag-
gressive trajectories (e.g., pouring) or getting trapped in a local minimum, preventing the acquisition
of crucial rotational behavior necessary for task completion (e.g., cutting avocado), resulting in a low
success rate. Thirdly, comparing IW with our method, IW’s results are heavily task-specific. For
tasks where force is crucial (e.g., cutting avocado and rolling dough), our method performs sig-
nificantly better than the baseline methods. This demonstrates that merely transferring observable
information from the video to the robot program is insufficient.

We also present the human demonstrations (from YouTube) and the sampled robot trajectories in
Fig. 3. Please refer to the supplementary video for more qualitative results.

5 Limitations and Conclusions

Despite enabling one-shot video imitation across a diverse range of tasks, our method faces three ma-
jor limitations. Firstly, detection, segmentation, and tracking errors present significant challenges.
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Figure 3: For each task, we present the video demonstration (top) and the robot trajectories (bottom).
Our proposed method allows the robot to perform challenging tasks such as cutting an avocado,
cutting vegetables, pouring liquid, rolling dough, and slicing pizza from a single demonstration.

While existing works often assume precise results, achieving this in real-world scenarios is complex
and requires meticulous hyperparameter tuning. Secondly, hyperparameter tuning during learning
remains a challenge. Similar to many trajectory optimization or reinforcement learning methods,
the weights of each cost term must be carefully adjusted based on the observed policy performance.
Lastly, tuning simulation properties, such as the density of the simulation grid or material viscos-
ity, also poses hurdles. Although a single set of parameters can often be applied to multiple tasks,
achieving autonomous generalization remains difficult.

In conclusion, our work highlights that behavior extends beyond merely replicating object relation-
ships or actor trajectories. We propose interpreting video demonstrations as Parameterized Sym-
bolic Abstraction Graphs (PSAG), where nodes represent objects and edges signify relationships.
By grounding geometric relationships in simulation and incorporating non-geometric, visually im-
perceptible attributes such as forces, our method effectively learns to manipulate diverse dynamics
and deformable objects from a single video demonstration. This approach points towards reducing
the reliance on teleoperated robot demonstration data and emphasizes learning from single human
demonstrations.
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A Method Details

In this section, we present more details of our method.

A.1 Grasping

The final detail to discuss is grasping. For cutting avocado, the knife is attached to the X-arm robot,
while the avocado is held by the end-effector of a Franka robot. For cutting vegetables, the knife
is attached directly to the end-effector of a Franka robot. In the task of slicing pizza, the slicer is
mounted on the end-effector of a Franka robot. Similarly, for rolling dough, the roller is directly
attached to the robot using a customized tool. For the pouring task, we used a heuristic grasping
planner, similar to those used in many one-shot imitation learning studies [4]. We sampled 100
collinear antipodal grasps around the middle of the cup and selected the one with point patches
having the highest agreeable normals to the object surface, which proved effective for our purposes.
This grasp planning approach could also be replaced with a more advanced grasping planner [68].

B Experiment Details

In this section, we present more details of our experiment.

B.1 Hardware Setup and Control Stack

Our real-world experiments utilize a Franka Panda robot arm with all state data logged at 50 Hz.
The robot’s action space is a 6 DoF homogeneous transformation, transitioning from the previous
end-effector pose to the new one. The new joint positions are calculated using inverse kinematics
via Mujoco [69]. These joint positions are subsequently sent to Facebook Polymetis [70] to control
the Franka robot.

B.2 Baselines

As there is no direct baseline for comparison, we evaluate our method against four variants of ex-
isting approaches: You Only Demonstrate Once (YODO)[4], Trajectory Following (TF), Inverse
Reinforcement Learning (IRL), and Interaction Warping (IW)[67]. To make the comparisons fair,
we use the same video processing pipeline for all baseline methods.

• You Only Demonstrate Once (YODO). We compared our approach with an adapted version
of the You Only Demonstrate Once [4], which combines a collision-aware path planning
algorithm with a keypose-based last-inch manipulation algorithm. However, instead of us-
ing their pretrained NUNOCS Net, which only works for batteries and gears, we employed
the same video interpretation system as proposed in our method.

• Trajectory Following (TF). We implemented a trajectory-following baseline by eliminating
the influence of geometric constraints by setting λ1 in Eq. 1 to zero.

• Inverse Reinforcement Learning (IRL). We implemented an inverse reinforcement learning
algorithm with sparse rewards by nullifying the influence of reference trajectories, setting
λ2 in Eq. 1 to zero.

• Interaction Warping (IW). We devised a baseline approach solely leveraging features di-
rectly observable in the video. This was achieved by disregarding force information, setting
k2 in Eq. 2 to zero. Consequently, our method loses the ability to transfer any unobservable
information from the video to the robot program, akin to the concept of interaction warping
proposed by Biza et al. [67]
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